
Act! v17 Architecture
Reference

Act! Architecture Reference
Copyright © 2014 Swiftpage ACT! LLC.

All Rights Reserved. Swiftpage, Act!, and the Swiftpage product and service names mentioned herein are
registered trademarks or trademarks of Swiftpage ACT! LLC or its affiliated entities. Business Objects® and
the Business Objects logo, BusinessObjects® and Crystal Reports® are trademarks or registered trademarks
of Business Objects Software Ltd. in the United States and in other countries. Microsoft®, SQL Server®,
Windows®, Windows Vista®, and theWindows logo are trademarks or registered trademarks of theMicrosoft
group of companies. All other trademarks are the property of their respective owners.

Released 2014 for Act! Pro v17 and Act! Premium v17

Version: UA10_182014

This material may not, in whole or in part, be copied, photocopied, reproduced, translated, or reduced to any
electronic medium or computer-readable form without prior consent in writing from Swiftpage ACT! LLC, 8800
N. Gainey Center Drive, Suite 200 Scottsdale, AZ 85258 ATTN: Legal Department.

ALL EXAMPLESWITH NAMES, COMPANY NAMES, OR COMPANIES THAT APPEAR IN THIS MANUAL
ARE FICTIONAL AND DONOT REFER TOOR PORTRAY IN NAME OR SUBSTANCE ANY ACTUAL
NAMES, COMPANIES, ENTITIES, OR INSTITUTIONS. ANY RESEMBLANCE TOANY REAL PERSON,
COMPANY, ENTITY, OR INSTITUTION IS PURELY COINCIDENTAL.

Every effort has beenmade to ensure the accuracy of this material. However, Swiftpage ACT! LLC makes no
warranties with respect to this documentation and disclaims any implied warranties of merchantability and
fitness for a particular purpose. Swiftpage ACT! LLC shall not be liable for any errors or for incidental or
consequential damages in connection with the furnishing, performance, or use of this material or the examples
herein. The information in this material is subject to change without notice.

End User License Agreement

This product is protected by an End User License Agreement. To view the agreement, go to the Helpmenu in
the product, click About Act!, and then click the View End-User License Agreement link.

Published by

Swiftpage ACT! LLC

8800 N. Gainey Center Drive, Suite 200

Scottsdale, AZ 85258

Contents

Introduction 1
Overview of the Act! Development Platform 1
About the Architecture Reference 1

Extensibility Model 2
Consuming the Framework 2
Extending the Application 2
Plugins 3
Custom Controls 3
Custom Tabs 3

Entities and Relationships 4
Entities 4
Contacts 4
Groups 4
Companies 5
Opportunities 5

The Framework Object Model 6
ActFramework Class 6
Getting Started 6
Managers 6
Metadata 6
Entity Lists 7
Working with Data 8

The Application Object Model 9
The ActApplication Class 9
UI Managers 9
Plugins 9
Views 9
Application State 9
Menus and Toolbars 10
Custom Controls 10
Custom Tab 11

Sample Code 12
Using Framework Metadata 12
Getting a Contact List 13

Index 14

Introduction

Overview of the Act! Development Platform
The Act! platform consists of feature-rich components that are highly extensible. The platform is built
on the .NET Framework and provides a base for rich customization, personalization, and integration.
Where Act! seeks to empower users to customize the product to their business, the Act! SDK helps
third parties extend that vision through independent development.

The Act! platform has three logical tiers, the Application, the Framework, and the Database, as shown
in the following figure.

The Application encompasses all user interface aspects, including screens known as views,
navigational components such as menus and toolbars, and design-time components.

The Framework is the engine, providing core functionality including data access, schemametadata and
modifications, security, synchronization, database creation andmaintenance, data exchange and
interoperability, and other essential elements. The Framework includes access to first-class entities
such as contacts, groups, companies, and opportunities. It also provides access to extended data
including notes, histories, activities, and documents.

The Database is the storage container for primary data. It maintains data integrity and relationships.

About the Architecture Reference
This Architecture Reference provides an overview of entities, relationships, the Framework Object
Model, and the Application Object Model. See "Sample Code" on page 12 for sample code provided for
using Framework metadata.

Act! Architecture Reference 1

Extensibility Model

Both the Framework and Application tiers have special ways for third parties to access data and
customize, integrate with, automate, and extend Act!. The unique needs and interactions of third
parties will determine which integration path they should use.

This chapter explains when third parties will need to use the Framework and explains someways to
extend the application using plugins, custom controls, and custom tabs.

Consuming the Framework
The Framework can be consumedwhen third parties need to integrate with Act! and when no
interaction with the Application or User Interface is needed. Applications andWindows® services can
consume the Framework to access data, automate functionality, and provide back-end services. Web
applications and services can consume the Framework to provide client applications or back-end
solutions across network boundaries. Trusted devices can also synchronize using the Framework.

Extending the Application
The Application has several extensibility points, including plugins, custom controls, and custom tabs.
Third parties can use these separately to provide new functionality or together to createmore complex
solutions.

Act! Architecture Reference 2

Plugins
Plugins enable third parties to extend the application behaviorally and/or visually. Plugins can also
serve as gateways to other applications or services that need live interaction with the Application. As in
other applications, plugins in Act! are given context in the hosting application when they are loaded.
Plugins can access all of the Application (and Framework). Typically, plugins will subscribe and react
to events in the Application and Framework to perform some specialized functionality.

Custom Controls
Third parties can use custom controls to extend the Application's designable views. These include the
Contact, Group, and Company detail views. Custom controls also can support rich design-time
behavior and integrate with the Layout Designer.

Custom Tabs
Third parties can add custom tabs to provide new ways to view data, for example, in detail views of the
application.

Act! includes anOLEDB Provider, which enables read-only access to database views. This is the
lowest form of data access, since it circumvents the Framework. It can be used to generate custom
reports with tools such as Crystal Reports®. Security is maintained using the OLEDB provider.

Act! Architecture Reference 3

Entities and Relationships

Entities
Act! consists of primary data or entities and extended data or entities. Primary data includes contacts,
groups, companies, and opportunities. Extended data includes notes, histories, activities, secondary
contacts, and documents.

Contacts
Contacts are a first-class entity. Any kind of extended data can be associated with a contact, including
notes, histories, activities, opportunities, documents, and secondary contacts.

Groups
Groups are dynamic or static sets of contacts and opportunities. Groups can have their own notes,
histories, opportunities, and documents. Activities can be rolled up, so that users can access any of the
items associated with contacts in a group. Groups can also contain subgroups.

Act! Architecture Reference 4

Companies
Companies are similar to groups. They can have their own notes, histories, opportunities, and
documents, and they can roll up activities. Companies can also have sub-companies, known as
divisions.

Opportunities
Opportunities are a first class entity and can be associated with any number (including zero) of groups,
companies, and contacts. An opportunity must be associated with one process and one stage within
the process. Opportunities can havemany products/services.

Act! Architecture Reference 5

The Framework Object Model

This chapter gives an overview of the Framework object model.

ActFramework Class
ActFramework, found in Act.Framework.dll, is the root Framework class. It is the entry point to all Act!
core functionality.

Getting Started
To use ActFramework, youmust be authenticated as an Act! user and log in as described in the
following:

ActFramework framework = new ActFramework();

framework.LogOn("CHuffman", "password", "localhost", "MyDatabase");

Managers
ActFramework exposes Managers via properties. Managers are gateways to feature- or entity-related
functionality. For example, a ContactManager is accessible for the Contacts property, which is
responsible for contact-related operations.

Metadata
Much of the structure that defines extended data classes, such as Note, History, and Activity, is well
defined and unalterable. The data surrounding these is available via members of the data's respective
classes. However, you can change the topology of primary entities, such as Contact, Group,
Company, andOpportunities. You do this via Define Fields (using the application) or via the
DatabaseManager (using the Framework). These entities are largely metadata driven. Determining their
landscape and data is a process of discovery.

The Framework exposes such an entity's fields via field descriptors. Specifically, entities have
specialized types deriving from DBFieldDescriptor. Most of the functionality is based on a .NET native
type, the PropertyDescriptor. A PropertyDescriptor is a virtual representation of a property.
PropertyDescriptor objects can depict the topology of some classes, whichmay or may not differ from
their real properties. Typically, PropertyDescriptor objects are retrieved via reflection, to dynamically
discover the properties of some class. This virtualization can also be used when databinding a list to a
grid (by implementing ITypedList). PropertyDescriptor objects also contain an AttributeCollection,
which represents any attributes or declarativemetadata of the Property.

The Framework extends the capability of a PropertyDescriptor to represent the virtualization of a
record's field; more specifically, to dynamically discover an entity’s fields. Likewise, the Framework
leverages Attribute objects on the PropertyDescriptor (exposed via the AttributeCollection on the
Attributes property) to provide attributes of that field (such as size, mask, or default value). These
attributes typically depend on the ACTType of the field (e.g., mask is not applicable to picture fields).

Act! Architecture Reference 6

A PropertyDescriptor defines a property or field in many ways. It defines the type of the property via
PropertyType and whether it is read-only via IsReadOnly. It assigns the field name via DisplayName.
DBFieldDescriptor extends this to provide ACTType, which represents the Act! type (such as
uppercase or phone number). Values can be retrieved from and updated to entities using the GetValue
and SetValuemethods, respectively.

Unlike typical retrieval of PropertyDescriptor objects via reflection, the Framework enables retrieving
DBFieldDescriptor objects via an entity's Manager. For consistency and databinding, the
ActFramework entity Managers expose all fields as if they weremetadata-driven. Thus, all entity
managers implement an interface ISupportMetaData. This interface allows retrieval of metadata for an
entity and filtering of the type of metadata by Type or ACTType.

See "Using Framework Metadata" on page 12 for a sample of how field descriptors can be used.

You are not limited to field descriptors to get or set data in entities. You can also fetch and update field
data using the FieldCollection indexer onmutable entities. However, using field descriptors is the
preferredmethod of retrieving and setting data. Field descriptors cache neededmetadata, so reusing a
field descriptor to access or change data onmultiple entities (e.g., looping over entities and getting a
field value) performs far better than using the field collection on the entity, which has to look up the
metadata each time.

Entity Lists
All entities can be retrieved via lists (collections). Likemetadata, lists are retrieved through their
respective entity Manager. Each entity Manager may have specialized parameters, such as filter
criteria, that are used to retrieve a list. However, all must at least support retrieving a list passing
SortCriteria. SortCriteria consists of the PropertyDescriptor (see "Metadata" in this chapter), specifying
the field, and the ListSortDirection, specifying the direction on which to sort (ascending or descending).
Some lists, such as mutable entity lists, support sorting onmultiple fields.

Entity lists can be bound to any .NET-aware grid controls, which will use the lists ITypedList
implementation to get the PropertyDescriptor objects (see "Metadata" in this chapter). The
PropertyDescriptor objects are used to name the columns and get data for each row. Grid controls also
will use the entity list's IBindingList implementation to sort, search, and react to list notifications, such
as when a new item is added.

See "Getting a Contact List" on page 13 for a sample.

All entity lists, except for ActivityList, fetch data on demand and cache the data as a way to scale to
large quantities. As a side effect, datamay become stale. To refresh data, invoke the Refreshmethod.
Also, bemindful that iterating over or accessing items in the list may cause data to be fetched from the
database.

Act! Architecture Reference 7

Working with Data
You can create and delete entities from their Managers. You can create and delete primary entities,
including contacts, groups, opportunities, and companies, via their lists, using IBindingList.AddNew(),
and IList.Remove() methods. You can retrieve extended data for a primary entity via theManager of the
extended data. For example, the NoteManager has GetNotes overloads to pass in a contact or a
company.

Within a list, you can find items using the Find() method, which takes a field descriptor (see "Metadata"
in this chapter) and a value. You can use a lookup to get a list of primary entities that matches a
particular criteria. You perform lookups via the LookupManager. Lookups are essentially list criteria;
each criteria is made up of a logical operator (AND/OR), a field, an operator valid for that field, and a
value.

Act! Architecture Reference 8

The Application Object Model

This chapter provides an overview of the Application object model.

The ActApplication Class
ActApplication, found in Act.UI.dll, is the parent application class and is the entry point to all User
Interface functionality. The Application typically is not created and accessible directly, unlike the
Framework, but third parties can acquire its context via extensibility points, such as plugins, custom
controls, and custom tabs.

UI Managers
ActApplication exposes UI Managers via properties. Like ActFramework's Managers, the
ActApplication's Managers are gateways to feature- or entity-related functionality.

Plugins
Plugins, as previously mentioned, are given context by the Application (and Framework via the
Application). The Application serves as a loader and host for plugins, which can then react to events,
customize or extend the application, and communicate with other applications.

To become an Act! plugin, a typemust:

l Implement the IPlugin interface (defined in Act.UI.dll).
l Reside in an assembly in the Plugins directory under the Act! application directory.

The IPlugin interface is a simple interface. It provides an entry point for the application to hand itself to
the plugin and a way to notify the plugin when the application is unloaded. After the plugin is loaded, and
the ActApplication is provided via the OnLoadmethod, the plugin is responsible for reacting to events
appropriately. For example, the plugin would have to react in amanner appropriate to the context of the
ActFramework's AfterLogon and BeforeLogoff events. The plugin would also have to react in amanner
appropriate to the context of the BeforeDatabaseLock and AfterDatabaseLock events.

Views
Views are themain User Interface panes in the application. Views, other than calendaring, typically
provide detail or lists. Views can be enumerated via the ViewManager. The ActApplication notifies
listeners, via the CurrentViewChanged event, when a different view is shown. You can retrieve the
current view via the CurrentView property of the ActApplication. Views can be changed and shown via
entity UI managers. For example, UIContactManager.ShowDetailView() changes the view.

Application State
The Application contains information about the state of current entities and lists (such as the current
contact and current contact list). You can access this information via the ApplicationState property in
ActApplication. Events on the application also exist in the form XXXChanging and XXXChanged,
which notify consumers of entity and entity list changes.

Act! Architecture Reference 9

Menus and Toolbars
Act.UI.Core.dll contains all types and functionality related tomenus and toolbars. The Explorer
property on the ActApplication object is themain entry point for accessing, adding, and removing
toolbars. Plugins can use this to add a new menu item and to perform an operation when the item is
selected.

Custom Controls
Custom controls can provide new ways to visualize data and interact with the application in designable
views. You canmake custom controls available as part of a toolbox tool in the Layout Designer and add
them to layouts to enhance the contacts, groups, and companies detail views.

To become a custom control, a typemust:

l Implement IComponent (for example, by deriving from Component or Control).
l Bemarked with the CustomControlAttribute attribute (defined in
Act.Shared.ComponenModel.dll).

l Reside in an assembly in the Tools directory under the Act! application directory.
This enables end users to access the control by right-clicking on the Layout Designer toolbox and
selecting the Customizemenu. If selected, the custom control is available in the “Custom” category of
the toolbox, for use in the Layout Designer.

Once the custom control is placed on a layout, and the layout is saved, that custom control must be
installed on the client machine for the end user to use that layout.

Using .NET Design-Time Attributes and Types
The Layout Designer supports standard .NET design-time related attributes and types; most of this
exceeds the scope of this document. However, minimal design-time related functionality is
documented here to explain basic design-time interaction with the Layout Designer:

l CategoryAttribute- Mark a property with this attribute to control the category that will display in
the Properties window in the Layout Designer.

l DescriptionAttribute - Mark a property with this attribute to control the description of the property
that will display in the Properties window in the Layout Designer.

Using Design-Time Instruments
The Layout Designer supports design-time instruments such as TypeConverter and UITypeEditor. You
can use these objects to control the behavior of the properties in the Properties window in the Layout
Designer.

Using .NET Serialization Techniques
The Layout Designer also leverages standard .NET techniques for serialization. Custom controls can
leverage these to control which properties get serialized in layouts and how this is done:

l DefaultValueAttribute - Mark a property with this attribute to skip serialization of a property
whose value has not changed from the default.

l DesignerSerializationVisibility - Use this attribute to skip serialization of a property or to
serialize the contents of a property (such as a collection).

l ShouldSerializeXXX method - Use this method, where XXX is the name of a property, to
enable a control to programmatically manage whether or not a property should be serialized.

Act! Architecture Reference 10

Using Act! Design-Time Attributes, Interfaces, and Types
You can use Act!-related design-time attributes, interfaces, and types in the creation of custom
controls:

l LayoutToolboxFriendlyNameAttribute - Mark a type with this attribute to enable controls to
have a friendly name in the designer (other than its type). Provide a public static string
LayoutFriendlyName property to return the name.

l TabableAttribute - Mark a type with this attribute to enable controls to participate in Tab and
Enter Stop functionality in the Layout Designer.

l ToolboxBitmapAttribute - Mark a type with this attribute to enable controls to specify a custom
icon that will display in the toolbox next to the control names.

l EmptyTypeConverter - Mark a type with a TypeConverterAttribute to enable controls to
completely hide their properties in the Properties window in the Layout Designer.

l LayoutControlDesigner - Mark a type with a DesignerAttribute to enable the right-click ”Edit
Properties” menu in the Layout Designer.

l ICustomClipboardSupport - Implement this interface for controls that interact with Act!’s
clipboard functionality (cut/copy/paste/delete/undo).

l SpellCheckableSupportAttribute and ISupportSpellCheck - Use these controls to support
spell checking.

l LayoutSingletonComponentAttribute - Mark a type with this attribute to specify that a control
can exist only once on a layout.

Binding Custom Controls to a Field
You can bind custom controls to a field, similar to binding a Field or Memo control in the Layout
Designer. Youmust do the following to implement a bound custom control:

l Implement IXXXListBoundControl, where XXX is Contact, Group, Opportunity, or Company. This
forces the control to provide a list component property, which is how it will get the context of the
current entity. Once the list is set, you can attach the control to the PostionChanged and
ItemChanged events on the CurrencyManager (standard .NET databinding) to be notified when
the current entity changes. See SDK samples.

l Implement IXXXFieldBoundControl, where XXX is Contact, Group, Opportunity, or Company.
This forces the control to provide a field descriptor property ("Metadata" on page 6), so the control
can get and set values in the entity when it is updated. See SDK samples.

l Implement IUpdateableComponent. This tells the control when to update changes on the
underlying entity. See SDK samples.

Custom Tab
You can enrich the Application by creating a custom tab, whichmay contain its own controls and
interface. Youmust use a plugin to create a custom tab. The plugin adds a new tab to a layout after the
layout loads. Typically, a plugin will attach to the LayoutChanged event on the ApplicationState object
and add a tab using the UILayoutDesignerManager.AddTabToCurrentLayout() method. This method
takes a .NET TabPage as a parameter. The plugin must create the tab and add controls to its
collection. See SDK samples.

Act! Architecture Reference 11

Sample Code

This chapter contains two samples of code: the first shows the use of Framework metadata; the
second shows getting a contact list.

Using Framework Metadata
The following is an example of using Framework metadata. In this example: print the field display name
of any contact string fields that can be edited, do not allow empty values, and do not have any default
value (thus, string fields are 'blank' when we create a new contact):

// filter to just return string fields on a Contact

ContactFieldDescriptor[] fields =
framework.Contacts.GetContactFieldDescriptors(new Type[]{typeof
(string)});

// we're going to look for editable fields that don't allow empty values

// and don't have default values, so we'll need these attribute types

Type allowsEmptyType = typeof(AllowEmptyFieldAttribute);

Type defaultValueType = typeof(DefaultFieldValueAttribute);

// initialize our attributes

AllowEmptyFieldAttribute allowsEmptyFieldAttr = null;

DefaultFieldValueAttribute defaultFieldAttr = null;

AttributeCollection attributes = null;

ContactFieldDescriptor contactField = null;

for (int i=0;i<fields.Length; i++)

{

contactField = fields[i];

// make sure we can modify this field

if (!contactField.IsReadOnly)

{

attributes = contactField.Attributes;

// check if we don't all empty values

allowsEmptyFieldAttr = attributes[allowsEmptyType]as
AllowEmptyFieldAttribute;

if (allowsEmptyFieldAttr != null &&
!allowsEmptyFieldAttr.AllowEmpty)

{

// now check to see we don't have a default value

defaultFieldAttr = attributes[defaultValueType] as
DefaultFieldValueAttribute;

if (defaultFieldAttr == null || defaultFieldAttr.DefaultValue ==
null)

{

Act! Architecture Reference 12

// we found one

Console.WriteLine(contactField.DisplayName);

}

}

}

}

Getting a Contact List
The following sample shows how to get a contact list.

// get the company field descriptor

DBFieldDescriptor companyField =
framework.Contacts.GetFieldDescriptor("TBL_CONTACT.COMPANYNAME",
true);

// get contacts I have access to, sorted by company

ContactList contacts = framework.Contacts.GetContacts(

new SortCriteria[]{new SortCriteria(companyField,
ListSortDirection.Ascending)});

Act! Architecture Reference 13

Index

.

.NET design-time attributes and types 10

.NET Framework 1

.NET serialization techniques 10

.NET TabPage 11

A

Act! platform 1
Act.Application 9
Act.Framework.dll 6
Act.UI.Core.dll 10
Act.UI.dll 9
ActApplication class 9
ActFramework
logging in 6
managers 6

ActFramework class 6
Application 2
Application tier 1
ApplicationState property 9

B

Bound custom control 11
Business logic tier 1

C

CategoryAttribute 10
Clipboard 11
Collections 7
Companies 5
Crystal Reports 3
Custom controls 2-3, 10
binding to a field 11

Custom icon 11
Custom tabs 2-3
creating 11

D

Data types 10
DefaultValueAttribute 10
Define fields 6
DescriptionAttribute 10

Design-time
attributes 11
attributes and types 10
interfaces 11
related instruments 10
types 11

Design-time components 1
DesignerSerializationVisibility 10
Divisions 5

E

Edit properties menu 11
EmptyTypeConverter 11
Enter stop functionality 11
Entities
companies 4
contacts 4
groups 4
opportunities 4

Extended data
activities 4
documents 4
histories 4
notes 4
secondary contacts 4

F

Field descriptors 6
FieldCollection indexer 7
Framework 2
Framework metadata
example 12

Framework tier 1

I

ICustomClipboardSupport 11
IFieldBoundControl 11
IListBoundControl 11
IPlugin interface 9
ISupportSpellCheck 11
ItemChanged event 11
IUpdateableComponent 11

L

Layout Designer 10-11
LayoutChanged event 11
LayoutControlDesigner 11
LayoutSingletonComponentAttribute 11
LayoutToolboxFriendlyNameAttribute 11
Lists 7
Logging in to ActFramework 6

Act! Architecture Reference 14

M

Managers
ActFramework 6
UI 9

Menus 1
Metadata 6

O

OLEDB Provider 3
Opportunities 5

P

Plugins 2-3, 9
addingmenu items 10

PositionChanged event 11
Primary data 4
Primary entities 4
PropertyDescriptor 6

S

Serialization 10
ShouldSerializemethod 10
SortCriteria 7
Spell checking 11
SpellCheckableSupportAttribute 11

T

Tab stop functionality 11
TabableAttribute 11
Tabs
adding custom 3

Tier
Application 1
Database 1
Framework 1

Toolbars 1
ToolboxBitmapAttribute 11
TypeConverter 10

U

UI Managers 9
UITypeEditor 10

V

Views 1, 9
extending custom controls 3

Act! Architecture Reference 15

	Introduction
	Overview of the Act! Development Platform
	About the Architecture Reference

	Extensibility Model
	Consuming the Framework
	Extending the Application
	Plugins
	Custom Controls
	Custom Tabs

	Entities and Relationships
	Entities
	Contacts
	Groups
	Companies
	Opportunities

	The Framework Object Model
	ActFramework Class
	Getting Started
	Managers
	Metadata
	Entity Lists
	Working with Data

	The Application Object Model
	The ActApplication Class
	UI Managers
	Plugins
	Views
	Application State
	Menus and Toolbars
	Custom Controls
	Custom Tab

	Sample Code
	Using Framework Metadata
	Getting a Contact List

	Index

